Documentation
Predicting with LLMs
Agentic Flows
Text Embedding
Tokenization
Manage Models
Model Info
API Reference
Text Completions
Use llm.complete(...)
to generate text completions from a loaded language model. Text completions mean sending an non-formatted string to the model with the expectation that the model will complete the text.
This is different from multi-turn chat conversations. For more information on chat completions, see Chat Completions.
First, you need to load a model to generate completions from. This can be done using the model
method on the llm
handle.
import { LMStudioClient } from "@lmstudio/sdk";
const client = new LMStudioClient();
const model = await client.llm.model("qwen2.5-7b-instruct");
Once you have a loaded model, you can generate completions by passing a string to the complete
method on the llm
handle.
const completion = model.complete("My name is", {
maxTokens: 100,
});
for await (const { content } of completion) {
process.stdout.write(content);
}
console.info(); // Write a new line for cosmetic purposes
You can also print prediction metadata, such as the model used for generation, number of generated tokens, time to first token, and stop reason.
console.info("Model used:", completion.modelInfo.displayName);
console.info("Predicted tokens:", completion.stats.predictedTokensCount);
console.info("Time to first token (seconds):", completion.stats.timeToFirstTokenSec);
console.info("Stop reason:", completion.stats.stopReason);
Here's an example of how you might use the complete
method to simulate a terminal.
import { LMStudioClient } from "@lmstudio/sdk";
import { createInterface } from "node:readline/promises";
const rl = createInterface({ input: process.stdin, output: process.stdout });
const client = new LMStudioClient();
const model = await client.llm.model();
let history = "";
while (true) {
const command = await rl.question("$ ");
history += "$ " + command + "\n";
const prediction = model.complete(history, { stopStrings: ["$"] });
for await (const { content } of prediction) {
process.stdout.write(content);
}
process.stdout.write("\n");
const { content } = await prediction.result();
history += content;
}